Module tomotopy.utils
Submodule tomotopy.utils
provides various utilities for topic modeling.
Corpus
class helps manage multiple documents easily.
The documents inserted into Corpus
can be used any topic models, and you can save the corpus preprocessed into a file and load the corpus from a file.
Expand source code
'''
Submodule `tomotopy.utils` provides various utilities for topic modeling.
`tomotopy.utils.Corpus` class helps manage multiple documents easily.
The documents inserted into `Corpus` can be used any topic models, and you can save the corpus preprocessed into a file and load the corpus from a file.
'''
class Corpus:
'''`Corpus` class is a utility that makes it easy to manage large amounts of documents.
An instance of `Corpus` can contain multiple preprocessed documents, and can be used directly by passing them as parameters of the topic modeling classes.
'''
class _VocabDict:
def __init__(self):
self.id2word = []
self.word2id = {}
def to_id(self, word):
r = self.word2id.get(word, None)
if not r is None: return r
r = len(self.word2id)
self.word2id[word] = r
self.id2word.append(word)
return r
def to_word(self, id_):
return self.id2word[id_]
def __init__(self, tokenizer=None, batch_size=64, stopwords=None):
'''Parameters
----------
tokenizer : Callable[[str, Any], Iterable[Union[str, Tuple[str, int, int]]]]
a callable object for tokenizing raw documents. If `tokenizer` is provided, you can use `tomotopy.utils.Corpus.add_doc` method with `raw` and `user_data` parameters.
`tokenizer` receives two arguments `raw` and `user_data` and
it should return an iterable of `str`(the tokenized word) or of Tuple[`str`, `int`, `int`] (the tokenized word, starting position of the word, the length of the word).
batch_size : int
`tomotopy.utils.Corpus.process` method reads a bunch of documents and send them to `tomotopy.utils.Corpus.add_doc`. `batch_size` indicates the size of the bunch.
stopwords : Union[Iterable[str], Callable[str, bool]]
When calling `tomotopy.utils.Corpus.add_doc`, words in `stopwords` are not added to the document but are excluded.
If `stopwords` is callable, a word is excluded from the document when `stopwords(word) == True`.
'''
self._docs = []
self._tokenizer = tokenizer
self._batch_size = batch_size
self._vocab = Corpus._VocabDict()
if callable(stopwords):
self._stopwords = stopwords
elif stopwords is None:
self._stopwords = lambda x: False
else:
self._stopwords = lambda x: x in set(stopwords)
def _select_args_for_model(self, model_type:type, args:dict):
import tomotopy as tp
if model_type in (tp.DMRModel, tp.GDMRModel):
return {k:v for k, v in args.items() if k in ('metadata')}
if model_type in (tp.LLDAModel, tp.PLDAModel):
return {k:v for k, v in args.items() if k in ('labels')}
if model_type is tp.MGLDAModel:
return {k:v for k, v in args.items() if k in ('delimiter')}
if model_type is tp.SLDAModel:
return {k:v for k, v in args.items() if k in ('y')}
if model_type is tp.DTModel:
return {k:v for k, v in args.items() if k in ('timepoint')}
return {}
def _feed_docs_to(self, model, transform=None):
if not self._docs:
raise ValueError("Cannot feed zero-size corpus.")
model._update_vocab(self._vocab.id2word)
transform = transform or (lambda x:x)
if self._tokenizer:
for doc in self._docs:
model._add_doc(doc[0], raw=doc[1], start_pos=doc[2], length=doc[3], **self._select_args_for_model(type(model), transform(doc[4])))
else:
for doc in self._docs:
model._add_doc(doc[0], **self._select_args_for_model(type(model), transform(doc[1])))
def _tokenize(self, raw, user_data=None):
tokens, ss, ls = [], [], []
for t in self._tokenizer(raw, user_data=user_data):
if type(t) is str:
if self._stopwords(t): continue
tokens.append(self._vocab.to_id(t))
elif type(t) is tuple and len(t) == 3:
if self._stopwords(t[0]): continue
tokens.append(self._vocab.to_id(t[0]))
ss.append(t[1])
ls.append(t[2])
else:
raise ValueError("`tokenizer` must return `str` or `tuple` of (`str`, `int`, `int`).")
return tokens, ss, ls
def add_doc(self, words=None, raw=None, user_data=None, **kargs):
'''Add a new document into the corpus and return an index of the inserted document.
This method requires either `words` parameter or `raw` and `user_data` parameters.
If `words` parameter is provided, `words` are expected to be already preprocessed results.
If `raw` parameter is provided, `raw` is expected to be a raw string of document which isn't preprocessed yet, and `tokenizer` will be called for preprocessing the raw document.
If you need additional parameters for a specific topic model, such as `metadata` for `tomotopy.DMRModel` or `y` for `tomotopy.SLDAModel`, you can pass it as an arbitrary keyword argument.
Parameters
----------
words : Iterable[str]
a list of words that are already preprocessed
raw : str
a raw string of document which isn't preprocessed yet.
The `raw` parameter can be used only when the `tokenizer` parameter of `__init__` is set.
user_data : Any
an user data for `tokenizer`. The `raw` and `user_data` parameter are sent to `tokenizer`.
**kargs
arbitrary keyword arguments for specific topic models
'''
if self._tokenizer:
if not words is None:
raise ValueError("`raw` is required when `tokenizer` or `batch_tokenizer` is provided.")
if not type(raw) is str:
raise ValueError("`raw` must be `str` type.")
if not raw: return -1
tokens, ss, ls = self._tokenize(raw, user_data=user_data)
self._docs.append((tokens, raw, ss, ls, kargs))
else:
if not raw is None:
raise ValueError("`words` is required when neither `tokenizer` nor `batch_tokenizer` is provided.")
if type(words) is str:
raise ValueError("`words` must not be `str`, but `iterable` of `str` type.")
if not words: return -1
self._docs.append(([self._vocab.to_id(w) for w in words], kargs))
return len(self._docs) - 1
def process(self, data_feeder):
'''Add multiple documents into the corpus through a given iterator `data_feeder` and return the number of documents inserted.
Parameters
----------
data_feeder : Iterable[Union[str, Tuple[str, Any], Tuple[str, Any, dict]]]
any iterable yielding a str `raw`, a tuple of (`raw`, `user_data`) or a tuple of (`raw`, `user_data`, `arbitrary_keyword_args`).
'''
res = []
num = 0
for d in data_feeder:
num += 1
if type(d) is tuple and len(d) == 2:
res.append((*d, {}))
elif type(d) is tuple and len(d) == 3:
res.append(d)
elif type(d) is str:
res.append((d, None, {}))
else:
raise ValueError("`data_feeder` must return an iterable of str, of Tuple[str, Any] or Tuple[str, Any, dict]")
if len(res) >= self._batch_size:
for raw, user_data, kargs in res:
self.add_doc(raw=raw, user_data=user_data, **kargs)
res.clear()
for raw, user_data, kargs in res:
self.add_doc(raw=raw, user_data=user_data, **kargs)
return num
def save(self, filename:str):
'''Save the current instance into the file `filename`.
Parameters
----------
filename : str
a path for the file where the instance is saved
'''
import pickle
tok, st = self._tokenizer, self._stopwords
self._tokenizer = self._tokenizer and True
self._stopwords = None
with open(filename, 'wb') as f:
pickle.dump(self, f)
self._tokenizer = tok
self._stopwords = st
@staticmethod
def load(filename:str):
'''Load and return an instance from the file `filename`
Parameters
----------
filename : str
a path for the file to be loaded
'''
import pickle
with open(filename, 'rb') as f:
obj = pickle.load(f)
obj._stopwords = lambda x : False
return obj
def __len__(self):
return len(self._docs)
class SimpleTokenizer:
'''`SimpleTokenizer` provided a simple word-tokenizing utility with an arbitrary stemmer.'''
def __init__(self, stemmer=None):
'''Parameters
----------
stemmer : Callable[str, str]
a callable object for stemming words. If this value is set to `None`, words are not stemmed.
Here is an example of using SimpleTokenizer with NLTK for stemming.
.. include:: ./auto_labeling_code_with_porter.rst
'''
import re
self._pat = re.compile(r"""[^\s.,;:'"?!<>(){}\[\]\\/`~@#$%^&*|]+""")
self._stemmer = stemmer or (lambda x:x)
def __call__(self, raw:str, user_data=None):
for g in self._pat.finditer(raw.lower()):
start, end = g.span(0)
yield self._stemmer(g.group(0)), start, end - start
import os
if os.environ.get('TOMOTOPY_LANG') == 'kr':
__doc__ = """`tomotopy.utils` 서브모듈은 토픽 모델링에 유용한 여러 유틸리티를 제공합니다.
`tomotopy.utils.Corpus` 클래스는 대량의 문헌을 관리할 수 있게 돕습니다. `Corpus`에 입력된 문헌들은 다양한 토픽 모델에 바로 입력될 수 있습니다.
또한 코퍼스 전처리 결과를 파일에 저장함으로써 필요에 따라 다시 코퍼스를 파일에서 읽어들여 원하는 토픽 모델에 입력할 수 있습니다.
"""
__pdoc__ = {}
__pdoc__['Corpus'] = """`Corpus`는 대량의 문헌을 간편하게 다룰 수 있게 도와주는 유틸리티 클래스입니다.
`Corpus` 클래스의 인스턴스는 여러 개의 문헌을 포함할 수 있으며, 토픽 모델 클래스에 파라미터로 직접 넘겨질 수 있습니다.
Parameters
----------
tokenizer : Callable[[str, Any], Iterable[Union[str, Tuple[str, int, int]]]]
비정제 문헌을 처리하는 데에 사용되는 호출 가능한 객체. `tokenizer`가 None이 아닌 값으로 주어진 경우, `tomotopy.utils.Corpus.add_doc` 메소드를 호출할 때 `raw` 및 `user_data` 파라미터를 사용할 수 있습니다.
`tokenizer`는 인수로 `raw`와 `user_data` 2개를 받으며, 처리 결과로 `str`(정제된 단어) 혹은 Tuple[`str`, `int`, `int`] (정제된 단어, 단어 시작 위치, 단어 길이)의 iterable을 반환해야 합니다.
batch_size : int
`tomotopy.utils.Corpus.process` 메소드는 대량의 문헌을 읽어들인 후 `tomotopy.utils.Corpus.add_doc`으로 넘깁니다. 이 때 한번에 읽어들이는 문헌의 개수를 `batch_size`로 지정할 수 있습니다.
stopwords : Iterable[str]
`tomotopy.utils.Corpus.add_doc`가 호출될 때, `stopwords`에 포함된 단어들은 처리 단계에서 등록되지 않고 제외됩니다.
`stopwords`가 호출가능한 경우, `stopwords(word) == True`이면 word는 불용어 처리되어 제외됩니다."""
__pdoc__['Corpus.add_doc'] = """새 문헌을 코퍼스에 추가하고 추가된 문헌의 인덱스 번호를 반환합니다.
이 메소드는 `words` 파라미터나 `raw`, `user_data` 파라미터 둘 중 하나를 요구합니다.
`words` 파라미터를 사용할 경우, `words`는 이미 전처리된 단어들의 리스트여야 합니다.
`raw` 파라미터를 사용할 경우, `raw`는 정제되기 전 문헌의 str이며, `tokenizer`가 이 비정제문헌을 처리하기 위해 호출됩니다.
만약 `tomotopy.DMRModel`의 `metadata`나 `tomotopy.SLDAModel`의 `y`처럼 특정한 토픽 모델에 필요한 추가 파라미터가 있다면 임의 키워드 인자로 넘겨줄 수 있습니다.
Parameters
----------
words : Iterable[str]
이미 전처리된 단어들의 리스트
raw : str
전처리되기 이전의 문헌.
이 파라미터를 사용하려면 인스턴스 생성시 `tokenizer` 파라미터를 넣어줘야 합니다.
user_data : Any
`tokenizer`에 넘어가는 유저 데이터. `raw`와 `user_data` 파라미터가 함께 `tokenizer`로 넘어갑니다.
**kargs
추가적인 파라미터를 위한 임의 키워드 인자"""
__pdoc__['Corpus.process'] = """이터레이터 `data_feeder`를 통해 다수의 문헌을 코퍼스에 추가하고, 추가된 문헌의 개수를 반환합니다.
Parameters
----------
data_feeder : Iterable[Union[str, Tuple[str, Any], Tuple[str, Any, dict]]]
문자열 `raw`이나, 튜플 (`raw`, `user_data`), 혹은 튜플 (`raw`, `user_data`, `kargs`) 를 반환하는 이터레이터. """
__pdoc__['Corpus.save'] = """현재 인스턴스를 파일 `filename`에 저장합니다..
Parameters
----------
filename : str
인스턴스가 저장될 파일의 경로"""
__pdoc__['Corpus.load'] = """파일 `filename`로부터 인스턴스를 읽어들여 반환합니다.
Parameters
----------
filename : str
읽어들일 파일의 경로"""
__pdoc__['SimpleTokenizer'] = """`SimpleTokenizer`는 임의의 스테머를 사용할 수 있는 단순한 단어 분리 유틸리티입니다.
Parameters
----------
stemmer : Callable[str, str]
단어를 스테밍하는데 사용되는 호출가능한 객체. 만약 이 값이 `None`이라면 스테밍은 사용되지 않습니다.
SimpleTokenizer와 NLTK를 사용하여 스테밍을 하는 예제는 다음과 같습니다.
.. include:: ./auto_labeling_code_with_porter.rst"""
del os
Classes
class Corpus (tokenizer=None, batch_size=64, stopwords=None)
-
Corpus
class is a utility that makes it easy to manage large amounts of documents. An instance ofCorpus
can contain multiple preprocessed documents, and can be used directly by passing them as parameters of the topic modeling classes.Parameters
tokenizer
:Callable[[str, Any], Iterable[Union[str, Tuple[str, int, int]]]]
- a callable object for tokenizing raw documents. If
tokenizer
is provided, you can useCorpus.add_doc()
method withraw
anduser_data
parameters.tokenizer
receives two argumentsraw
anduser_data
and it should return an iterable ofstr
(the tokenized word) or of Tuple[str
,int
,int
] (the tokenized word, starting position of the word, the length of the word). batch_size
:int
Corpus.process()
method reads a bunch of documents and send them toCorpus.add_doc()
.batch_size
indicates the size of the bunch.stopwords
:Union[Iterable[str], Callable[str, bool]]
- When calling
Corpus.add_doc()
, words instopwords
are not added to the document but are excluded. Ifstopwords
is callable, a word is excluded from the document whenstopwords(word) == True
.
Expand source code
class Corpus: '''`Corpus` class is a utility that makes it easy to manage large amounts of documents. An instance of `Corpus` can contain multiple preprocessed documents, and can be used directly by passing them as parameters of the topic modeling classes. ''' class _VocabDict: def __init__(self): self.id2word = [] self.word2id = {} def to_id(self, word): r = self.word2id.get(word, None) if not r is None: return r r = len(self.word2id) self.word2id[word] = r self.id2word.append(word) return r def to_word(self, id_): return self.id2word[id_] def __init__(self, tokenizer=None, batch_size=64, stopwords=None): '''Parameters ---------- tokenizer : Callable[[str, Any], Iterable[Union[str, Tuple[str, int, int]]]] a callable object for tokenizing raw documents. If `tokenizer` is provided, you can use `tomotopy.utils.Corpus.add_doc` method with `raw` and `user_data` parameters. `tokenizer` receives two arguments `raw` and `user_data` and it should return an iterable of `str`(the tokenized word) or of Tuple[`str`, `int`, `int`] (the tokenized word, starting position of the word, the length of the word). batch_size : int `tomotopy.utils.Corpus.process` method reads a bunch of documents and send them to `tomotopy.utils.Corpus.add_doc`. `batch_size` indicates the size of the bunch. stopwords : Union[Iterable[str], Callable[str, bool]] When calling `tomotopy.utils.Corpus.add_doc`, words in `stopwords` are not added to the document but are excluded. If `stopwords` is callable, a word is excluded from the document when `stopwords(word) == True`. ''' self._docs = [] self._tokenizer = tokenizer self._batch_size = batch_size self._vocab = Corpus._VocabDict() if callable(stopwords): self._stopwords = stopwords elif stopwords is None: self._stopwords = lambda x: False else: self._stopwords = lambda x: x in set(stopwords) def _select_args_for_model(self, model_type:type, args:dict): import tomotopy as tp if model_type in (tp.DMRModel, tp.GDMRModel): return {k:v for k, v in args.items() if k in ('metadata')} if model_type in (tp.LLDAModel, tp.PLDAModel): return {k:v for k, v in args.items() if k in ('labels')} if model_type is tp.MGLDAModel: return {k:v for k, v in args.items() if k in ('delimiter')} if model_type is tp.SLDAModel: return {k:v for k, v in args.items() if k in ('y')} if model_type is tp.DTModel: return {k:v for k, v in args.items() if k in ('timepoint')} return {} def _feed_docs_to(self, model, transform=None): if not self._docs: raise ValueError("Cannot feed zero-size corpus.") model._update_vocab(self._vocab.id2word) transform = transform or (lambda x:x) if self._tokenizer: for doc in self._docs: model._add_doc(doc[0], raw=doc[1], start_pos=doc[2], length=doc[3], **self._select_args_for_model(type(model), transform(doc[4]))) else: for doc in self._docs: model._add_doc(doc[0], **self._select_args_for_model(type(model), transform(doc[1]))) def _tokenize(self, raw, user_data=None): tokens, ss, ls = [], [], [] for t in self._tokenizer(raw, user_data=user_data): if type(t) is str: if self._stopwords(t): continue tokens.append(self._vocab.to_id(t)) elif type(t) is tuple and len(t) == 3: if self._stopwords(t[0]): continue tokens.append(self._vocab.to_id(t[0])) ss.append(t[1]) ls.append(t[2]) else: raise ValueError("`tokenizer` must return `str` or `tuple` of (`str`, `int`, `int`).") return tokens, ss, ls def add_doc(self, words=None, raw=None, user_data=None, **kargs): '''Add a new document into the corpus and return an index of the inserted document. This method requires either `words` parameter or `raw` and `user_data` parameters. If `words` parameter is provided, `words` are expected to be already preprocessed results. If `raw` parameter is provided, `raw` is expected to be a raw string of document which isn't preprocessed yet, and `tokenizer` will be called for preprocessing the raw document. If you need additional parameters for a specific topic model, such as `metadata` for `tomotopy.DMRModel` or `y` for `tomotopy.SLDAModel`, you can pass it as an arbitrary keyword argument. Parameters ---------- words : Iterable[str] a list of words that are already preprocessed raw : str a raw string of document which isn't preprocessed yet. The `raw` parameter can be used only when the `tokenizer` parameter of `__init__` is set. user_data : Any an user data for `tokenizer`. The `raw` and `user_data` parameter are sent to `tokenizer`. **kargs arbitrary keyword arguments for specific topic models ''' if self._tokenizer: if not words is None: raise ValueError("`raw` is required when `tokenizer` or `batch_tokenizer` is provided.") if not type(raw) is str: raise ValueError("`raw` must be `str` type.") if not raw: return -1 tokens, ss, ls = self._tokenize(raw, user_data=user_data) self._docs.append((tokens, raw, ss, ls, kargs)) else: if not raw is None: raise ValueError("`words` is required when neither `tokenizer` nor `batch_tokenizer` is provided.") if type(words) is str: raise ValueError("`words` must not be `str`, but `iterable` of `str` type.") if not words: return -1 self._docs.append(([self._vocab.to_id(w) for w in words], kargs)) return len(self._docs) - 1 def process(self, data_feeder): '''Add multiple documents into the corpus through a given iterator `data_feeder` and return the number of documents inserted. Parameters ---------- data_feeder : Iterable[Union[str, Tuple[str, Any], Tuple[str, Any, dict]]] any iterable yielding a str `raw`, a tuple of (`raw`, `user_data`) or a tuple of (`raw`, `user_data`, `arbitrary_keyword_args`). ''' res = [] num = 0 for d in data_feeder: num += 1 if type(d) is tuple and len(d) == 2: res.append((*d, {})) elif type(d) is tuple and len(d) == 3: res.append(d) elif type(d) is str: res.append((d, None, {})) else: raise ValueError("`data_feeder` must return an iterable of str, of Tuple[str, Any] or Tuple[str, Any, dict]") if len(res) >= self._batch_size: for raw, user_data, kargs in res: self.add_doc(raw=raw, user_data=user_data, **kargs) res.clear() for raw, user_data, kargs in res: self.add_doc(raw=raw, user_data=user_data, **kargs) return num def save(self, filename:str): '''Save the current instance into the file `filename`. Parameters ---------- filename : str a path for the file where the instance is saved ''' import pickle tok, st = self._tokenizer, self._stopwords self._tokenizer = self._tokenizer and True self._stopwords = None with open(filename, 'wb') as f: pickle.dump(self, f) self._tokenizer = tok self._stopwords = st @staticmethod def load(filename:str): '''Load and return an instance from the file `filename` Parameters ---------- filename : str a path for the file to be loaded ''' import pickle with open(filename, 'rb') as f: obj = pickle.load(f) obj._stopwords = lambda x : False return obj def __len__(self): return len(self._docs)
Static methods
def load(filename: str)
-
Load and return an instance from the file
filename
Parameters
filename
:str
- a path for the file to be loaded
Expand source code
@staticmethod def load(filename:str): '''Load and return an instance from the file `filename` Parameters ---------- filename : str a path for the file to be loaded ''' import pickle with open(filename, 'rb') as f: obj = pickle.load(f) obj._stopwords = lambda x : False return obj
Methods
def add_doc(self, words=None, raw=None, user_data=None, **kargs)
-
Add a new document into the corpus and return an index of the inserted document. This method requires either
words
parameter orraw
anduser_data
parameters. Ifwords
parameter is provided,words
are expected to be already preprocessed results. Ifraw
parameter is provided,raw
is expected to be a raw string of document which isn't preprocessed yet, andtokenizer
will be called for preprocessing the raw document.If you need additional parameters for a specific topic model, such as
metadata
forDMRModel
ory
forSLDAModel
, you can pass it as an arbitrary keyword argument.Parameters
words
:Iterable[str]
- a list of words that are already preprocessed
raw
:str
- a raw string of document which isn't preprocessed yet.
The
raw
parameter can be used only when thetokenizer
parameter of__init__
is set. user_data
:Any
- an user data for
tokenizer
. Theraw
anduser_data
parameter are sent totokenizer
. **kargs
- arbitrary keyword arguments for specific topic models
Expand source code
def add_doc(self, words=None, raw=None, user_data=None, **kargs): '''Add a new document into the corpus and return an index of the inserted document. This method requires either `words` parameter or `raw` and `user_data` parameters. If `words` parameter is provided, `words` are expected to be already preprocessed results. If `raw` parameter is provided, `raw` is expected to be a raw string of document which isn't preprocessed yet, and `tokenizer` will be called for preprocessing the raw document. If you need additional parameters for a specific topic model, such as `metadata` for `tomotopy.DMRModel` or `y` for `tomotopy.SLDAModel`, you can pass it as an arbitrary keyword argument. Parameters ---------- words : Iterable[str] a list of words that are already preprocessed raw : str a raw string of document which isn't preprocessed yet. The `raw` parameter can be used only when the `tokenizer` parameter of `__init__` is set. user_data : Any an user data for `tokenizer`. The `raw` and `user_data` parameter are sent to `tokenizer`. **kargs arbitrary keyword arguments for specific topic models ''' if self._tokenizer: if not words is None: raise ValueError("`raw` is required when `tokenizer` or `batch_tokenizer` is provided.") if not type(raw) is str: raise ValueError("`raw` must be `str` type.") if not raw: return -1 tokens, ss, ls = self._tokenize(raw, user_data=user_data) self._docs.append((tokens, raw, ss, ls, kargs)) else: if not raw is None: raise ValueError("`words` is required when neither `tokenizer` nor `batch_tokenizer` is provided.") if type(words) is str: raise ValueError("`words` must not be `str`, but `iterable` of `str` type.") if not words: return -1 self._docs.append(([self._vocab.to_id(w) for w in words], kargs)) return len(self._docs) - 1
def process(self, data_feeder)
-
Add multiple documents into the corpus through a given iterator
data_feeder
and return the number of documents inserted.Parameters
data_feeder
:Iterable[Union[str, Tuple[str, Any], Tuple[str, Any, dict]]]
- any iterable yielding a str
raw
, a tuple of (raw
,user_data
) or a tuple of (raw
,user_data
,arbitrary_keyword_args
).
Expand source code
def process(self, data_feeder): '''Add multiple documents into the corpus through a given iterator `data_feeder` and return the number of documents inserted. Parameters ---------- data_feeder : Iterable[Union[str, Tuple[str, Any], Tuple[str, Any, dict]]] any iterable yielding a str `raw`, a tuple of (`raw`, `user_data`) or a tuple of (`raw`, `user_data`, `arbitrary_keyword_args`). ''' res = [] num = 0 for d in data_feeder: num += 1 if type(d) is tuple and len(d) == 2: res.append((*d, {})) elif type(d) is tuple and len(d) == 3: res.append(d) elif type(d) is str: res.append((d, None, {})) else: raise ValueError("`data_feeder` must return an iterable of str, of Tuple[str, Any] or Tuple[str, Any, dict]") if len(res) >= self._batch_size: for raw, user_data, kargs in res: self.add_doc(raw=raw, user_data=user_data, **kargs) res.clear() for raw, user_data, kargs in res: self.add_doc(raw=raw, user_data=user_data, **kargs) return num
def save(self, filename: str)
-
Save the current instance into the file
filename
.Parameters
filename
:str
- a path for the file where the instance is saved
Expand source code
def save(self, filename:str): '''Save the current instance into the file `filename`. Parameters ---------- filename : str a path for the file where the instance is saved ''' import pickle tok, st = self._tokenizer, self._stopwords self._tokenizer = self._tokenizer and True self._stopwords = None with open(filename, 'wb') as f: pickle.dump(self, f) self._tokenizer = tok self._stopwords = st
class SimpleTokenizer (stemmer=None)
-
SimpleTokenizer
provided a simple word-tokenizing utility with an arbitrary stemmer.Parameters
stemmer
:Callable[str, str]
- a callable object for stemming words. If this value is set to
None
, words are not stemmed.
Here is an example of using SimpleTokenizer with NLTK for stemming.
::
import tomotopy as tp # This code requires nltk package for stemming. from nltk.stem.porter import PorterStemmer from nltk.corpus import stopwords stemmer = PorterStemmer() stopwords = set(stopwords.words('english')) corpus = tp.utils.Corpus(tokenizer=tp.utils.SimpleTokenizer(stemmer=stemmer.stem), stopwords=lambda x: len(x) <= 2 or x in stopwords) # data_feeder yields a tuple of (raw string, user data) or a str (raw string) corpus.process(open(input_file, encoding='utf-8')) # make LDA model and train mdl = tp.LDAModel(k=20, min_cf=10, min_df=5, corpus=corpus) mdl.train(0) print('Num docs:', len(mdl.docs), ', Vocab size:', len(mdl.used_vocabs), ', Num words:', mdl.num_words) print('Removed top words:', mdl.removed_top_words) for i in range(0, 1000, 10): mdl.train(10) print('Iteration: {}\tLog-likelihood: {}'.format(i, mdl.ll_per_word)) # extract candidates for auto topic labeling extractor = tp.label.PMIExtractor(min_cf=10, min_df=5, max_len=5, max_cand=10000) cands = extractor.extract(mdl) labeler = tp.label.FoRelevance(mdl, cands, min_df=5, smoothing=1e-2, mu=0.25) for k in range(mdl.k): print("== Topic #{} ==".format(k)) print("Labels:", ', '.join(label for label, score in labeler.get_topic_labels(k, top_n=5))) for word, prob in mdl.get_topic_words(k, top_n=10): print(word, prob, sep='\t') print() # Example of Results # ----------------- # == Topic #13 == # Labels: weapon systems, weaponry, anti-aircraft, towed, long-range # aircraft 0.020458335056900978 # use 0.019993379712104797 # airlin 0.012523100711405277 # car 0.012058146297931671 # vehicl 0.01165518444031477 # carrier 0.011531196534633636 # tank 0.011221226304769516 # design 0.010694277472794056 # audi 0.010322313755750656 # martin 0.009981346316635609 # # == Topic #17 == # Labels: American baseball player, American baseball, American actress, singer-songwriter and guitarist, American actor, director, producer, and screenwriter # american 0.04471408948302269 # english 0.01746685802936554 # player 0.01714528724551201 # politician 0.014698212035000324 # footbal 0.012313882820308208 # author 0.010909952223300934 # actor 0.008949155919253826 # french 0.007647186517715454 # academ 0.0073020863346755505 # produc 0.006815808825194836 #
Expand source code
class SimpleTokenizer: '''`SimpleTokenizer` provided a simple word-tokenizing utility with an arbitrary stemmer.''' def __init__(self, stemmer=None): '''Parameters ---------- stemmer : Callable[str, str] a callable object for stemming words. If this value is set to `None`, words are not stemmed. Here is an example of using SimpleTokenizer with NLTK for stemming. .. include:: ./auto_labeling_code_with_porter.rst ''' import re self._pat = re.compile(r"""[^\s.,;:'"?!<>(){}\[\]\\/`~@#$%^&*|]+""") self._stemmer = stemmer or (lambda x:x) def __call__(self, raw:str, user_data=None): for g in self._pat.finditer(raw.lower()): start, end = g.span(0) yield self._stemmer(g.group(0)), start, end - start