Module tomotopy.coherence

Added in version: 0.10.0

This module provides the way to calculate topic coherence introduced the following paper:

Expand source code
'''
..versionadded:: 0.10.0

This module provides the way to calculate topic coherence introduced the following paper:

> * Röder, M., Both, A., & Hinneburg, A. (2015, February). Exploring the space of topic coherence measures. In Proceedings of the eighth ACM international conference on Web search and data mining (pp. 399-408).
> http://svn.aksw.org/papers/2015/WSDM_Topic_Evaluation/public.pdf
> https://github.com/dice-group/Palmetto

'''

from _tomotopy import _Coherence

from enum import IntEnum

class ProbEstimation(IntEnum):
    '''
    This enumeration follows the probability estimator in the paper.
    '''
    DOCUMENT = 1
    SLIDING_WINDOWS = 2

class Segmentation(IntEnum):
    '''
    This enumeration follows the segmentation in the paper.
    '''

    ONE_ONE = 1
    ONE_PRE = 2
    ONE_SUC = 3
    ONE_ALL = 4
    ONE_SET = 5

class ConfirmMeasure(IntEnum):
    '''
    This enumeration follows the direct confirm measure in the paper.
    '''

    DIFFERENCE = 1
    RATIO = 2
    LIKELIHOOD = 3
    LOGLIKELIHOOD = 4
    PMI = 5
    NPMI = 6
    LOGCOND = 7

class IndirectMeasure(IntEnum):
    '''
    This enumeration follows the indirect confirm measure in the paper.
    '''

    NONE = 0
    COSINE = 1
    DICE = 2
    JACCARD = 3

del IntEnum    

class Coherence(_Coherence):
    '''`Coherence` class provides the way to calculate topic coherence.
    '''
    _COH_MAP = {
        'u_mass':(ProbEstimation.DOCUMENT, 0, Segmentation.ONE_PRE, ConfirmMeasure.LOGCOND, IndirectMeasure.NONE),
        'c_v':(ProbEstimation.SLIDING_WINDOWS, 110, Segmentation.ONE_SET, ConfirmMeasure.NPMI, IndirectMeasure.COSINE),
        'c_uci':(ProbEstimation.SLIDING_WINDOWS, 10, Segmentation.ONE_ONE, ConfirmMeasure.PMI, IndirectMeasure.NONE),
        'c_npmi':(ProbEstimation.SLIDING_WINDOWS, 10, Segmentation.ONE_ONE, ConfirmMeasure.NPMI, IndirectMeasure.NONE)
    }

    def __init__(self, corpus, coherence='u_mass', window_size=0, targets=None, top_n=10, eps=1e-12, gamma=1.0):
        '''Initialize an instance to calculate coherence for given corpus

Parameters
----------
corpus : Union[tomotopy.utils.Corpus, tomotopy.LDAModel]
    A reference corpus to be used for estimating probability. 
    Supports not only an instance of `tomotopy.utils.Corpus`, but also any topic model instances including `tomotopy.LDAModel` and its descendants.
    If `corpus` is an instance of `tomotpy.utils.Corpus`, `targets` must be given too.
coherence : Union[str, Tuple[int, int, int], Tuple[int, int, int, int]]
    A coherence metric to be used. The metric can be a combination of (`tomotopy.coherence.ProbEstimation`, `tomotopy.coherence.Segmentation`, `tomotopy.coherence.ConfirmMeasure`)
    or a combination of (`tomotopy.coherence.ProbEstimation`, `tomotopy.coherence.Segmentation`, `tomotopy.coherence.ConfirmMeasure`, `tomotopy.coherence.IndirectMeasure`).
    
    Also shorthands in `str` type are supported as follows:
    > * 'u_mass' : (`tomotopy.coherence.ProbEstimation.DOCUMENT`, `tomotopy.coherence.Segmentation.ONE_PRE`, `tomotopy.coherence.ConfirmMeasure.LOGCOND`)
    > * 'c_uci' : (`tomotopy.coherence.ProbEstimation.SLIDING_WINDOWS`, `tomotopy.coherence.Segmentation.ONE_ONE`, `tomotopy.coherence.ConfirmMeasure.PMI`)
    > * 'c_npmi' : (`tomotopy.coherence.ProbEstimation.SLIDING_WINDOWS`, `tomotopy.coherence.Segmentation.ONE_ONE`, `tomotopy.coherence.ConfirmMeasure.NPMI`)
    > * 'c_v' : (`tomotopy.coherence.ProbEstimation.SLIDING_WINDOWS`, `tomotopy.coherence.Segmentation.ONE_SET`, `tomotopy.coherence.ConfirmMeasure.NPMI`, `tomotopy.coherence.IndirectMeasure.COSINE`)
window_size : int
    A window size for `tomotopy.coherence.ProbEstimation.SLIDING_WINDOWS`.
    default value is 10 for 'c_uci' and 'c_npmi' and 110 for 'c_v'.
targets : Iterable[str]
    If `corpus` is an instance of `tomotpy.utils.Corpus`, target words must be given. 
    Only words that are provided as `targets` are included in probability estimation.
top_n : int
    The number of top words to be extracted from each topic.
    If `corpus` is an instance of `tomotopy.LDAModel` and its descendants, target words are extracted from each topic of the topic model.
    But if `targets` are given, target words are extracted from `targets`, even if `corpus` is an instance of topic models.
eps : float
    An epsilon value to prevent division by zero
gamma : float
    A gamma value for indirect confirm measures
        '''
        import tomotopy as tp
        import itertools
        self._top_n = top_n
        if isinstance(corpus, tp.DTModel):
            self._topic_model = corpus
            if targets is None:
                targets = itertools.chain(*((w for w, _ in corpus.get_topic_words(k, t, top_n=top_n)) for k in range(corpus.k) for t in range(corpus.num_timepoints)))
            corpus = corpus.docs
        elif isinstance(corpus, tp.LDAModel):
            self._topic_model = corpus
            if targets is None:
                targets = itertools.chain(*((w for w, _ in corpus.get_topic_words(k, top_n=top_n)) for k in range(corpus.k)))
            corpus = corpus.docs
        else:
            self._topic_model = None
        
        try:
            pe, w, seg, cm, im = Coherence._COH_MAP[coherence]
        except KeyError:
            if type(coherence) is str: raise ValueError("Unknown `coherence` value (given {})".format(repr(coherence)))
            if len(coherence) not in (3, 4): raise ValueError("`coherence` must be a tuple with len=3 or len=4 (given {})".format(repr(coherence)))
            if len(coherence) == 3: 
                pe, seg, cm = coherence
                im = IndirectMeasure.NONE
            else:
                pe, seg, cm, im = coherence
            w = 0

            if type(pe) is str: pe = ProbEstimation[pe]
            if type(seg) is str: seg = Segmentation[seg]
            if type(cm) is str: cm = ConfirmMeasure[cm]
            if type(im) is str: im = IndirectMeasure[im]
        
        if not targets: raise ValueError("`targets` must be given as a non-empty iterable of str.")

        super().__init__(corpus, pe=pe, seg=seg, cm=cm, im=im, window_size=window_size or w, targets=targets, eps=eps, gamma=gamma)
    
    def get_score(self, words=None, topic_id=None, timepoint=None):
        '''Calculate the coherence score for given `words` or `topic_id`

Parameters
----------
words : Iterable[str]
    Words whose coherence is calculated. 
    If `tomotopy.coherence.Coherence` was initialized using `corpus` as `tomotopy.LDAModel` or its descendants, `words` can be omitted.
    In this case words are extracted from topic with `topic_id`.
topic_id : int
    An id of the topic from which words are extracted. 
    This parameter is valid when `tomotopy.coherence.Coherence` was initialized using `corpus` as `tomotopy.LDAModel` or its descendants.
    If this is omitted, the average score of all topics is returned.
timepoint : int
    ..versionadded:: 0.12.3

    A timepoint of the topic from which words are extracted. (Only for `tomotopy.DTModel`)
        '''
        import tomotopy as tp
        if words is None and self._topic_model is None:
            raise ValueError("`words` must be provided if `Coherence` is not bound to an instance of topic model.")
        if isinstance(self._topic_model, tp.DTModel):
            if int(topic_id is None) + int(timepoint is None) == 1:
                raise ValueError("Both `topic_id` and `timepoint` should be given.")
            if words is None and topic_id is None:
                c = []
                for k in range(self._topic_model.k):
                    for t in range(self._topic_model.num_timepoints):
                        c.append(super().get_score((w for w, _ in self._topic_model.get_topic_words(k, timepoint=t, top_n=self._top_n))))
                return sum(c) / len(c)
            
            if words is None:
                words = (w for w, _ in self._topic_model.get_topic_words(topic_id, timepoint=timepoint, top_n=self._top_n))
            return super().get_score(words)
        else:
            if timepoint is not None:
                raise ValueError("`timepoint` is valid for only `DTModel`.")
            if words is None and topic_id is None:
                c = []
                for k in range(self._topic_model.k):
                    c.append(super().get_score((w for w, _ in self._topic_model.get_topic_words(k, top_n=self._top_n))))
                return sum(c) / len(c)
            
            if words is None:
                words = (w for w, _ in self._topic_model.get_topic_words(topic_id, top_n=self._top_n))
            return super().get_score(words)

import os
if os.environ.get('TOMOTOPY_LANG') == 'kr':
    __doc__ = """..versionadded:: 0.10.0

이 모듈은 다음 논문에 의거한 토픽 coherence 계산법을 제공합니다:

> * Röder, M., Both, A., & Hinneburg, A. (2015, February). Exploring the space of topic coherence measures. In Proceedings of the eighth ACM international conference on Web search and data mining (pp. 399-408).
> http://svn.aksw.org/papers/2015/WSDM_Topic_Evaluation/public.pdf
> https://github.com/dice-group/Palmetto
"""
    __pdoc__ = {}
    __pdoc__['ProbEstimation'] = '''
논문에 제시된 probability estimator를 위한 열거형
'''
    __pdoc__['Segmentation'] = '''
논문에 제시된 segmentation을 위한 열거형
'''
    __pdoc__['ConfirmMeasure'] = '''
논문에 제시된 direct confirm measure를 위한 열거형
'''
    __pdoc__['IndirectMeasure'] = '''
논문에 제시된 indirect confirm measure를 위한 열거형
'''
    __pdoc__['Coherence'] = '''
`Coherence` 클래스는 coherence를 계산하는 방법을 제공합니다.

주어진 코퍼스를 바탕으로 coherence를 계산하는 인스턴스를 초기화합니다.

Parameters
----------
corpus : Union[tomotopy.utils.Corpus, tomotopy.LDAModel]
    단어 분포 확률을 추정하기 위한 레퍼런스 코퍼스.
    `tomotopy.utils.Corpus` 타입뿐만 아니라 `tomotopy.LDAModel`를 비롯한 다양한 토픽 모델링 타입의 인스턴스까지 지원합니다.
    만약 `corpus`가 `tomotpy.utils.Corpus`의 인스턴스라면 `targets`이 반드시 주어져야 합니다.
coherence : Union[str, Tuple[int, int, int], Tuple[int, int, int, int]]
    coherence를 계산하는 데 사용될 척도. 척도는 (`tomotopy.coherence.ProbEstimation`, `tomotopy.coherence.Segmentation`, `tomotopy.coherence.ConfirmMeasure`)의 조합이거나
    (`tomotopy.coherence.ProbEstimation`, `tomotopy.coherence.Segmentation`, `tomotopy.coherence.ConfirmMeasure`, `tomotopy.coherence.IndirectMeasure`)의 조합이어야 합니다.
    
    또한 다음과 같이 `str` 타입의 단축표현도 제공됩니다.
    > * 'u_mass' : (`tomotopy.coherence.ProbEstimation.DOCUMENT`, `tomotopy.coherence.Segmentation.ONE_PRE`, `tomotopy.coherence.ConfirmMeasure.LOGCOND`)
    > * 'c_uci' : (`tomotopy.coherence.ProbEstimation.SLIDING_WINDOWS`, `tomotopy.coherence.Segmentation.ONE_ONE`, `tomotopy.coherence.ConfirmMeasure.PMI`)
    > * 'c_npmi' : (`tomotopy.coherence.ProbEstimation.SLIDING_WINDOWS`, `tomotopy.coherence.Segmentation.ONE_ONE`, `tomotopy.coherence.ConfirmMeasure.NPMI`)
    > * 'c_v' : (`tomotopy.coherence.ProbEstimation.SLIDING_WINDOWS`, `tomotopy.coherence.Segmentation.ONE_SET`, `tomotopy.coherence.ConfirmMeasure.NPMI`, `tomotopy.coherence.IndirectMeasure.COSINE`)
window_size : int
    `tomotopy.coherence.ProbEstimation.SLIDING_WINDOWS`가 사용될 경우 쓰일 window 크기.
    기본값은 'c_uci'와 'c_npmi'의 경우 10, 'c_v'의 경우 110입니다.
targets : Iterable[str]
    만약 `corpus`가 `tomotpy.utils.Corpus`의 인스턴스인 경우, 목표 단어가 주어져야 합니다. 
    `targets`에 주어진 단어 목록에 대해서만 확률 분포가 추정됩니다.
top_n : int
    각 토픽에서 추출할 상위 단어의 개수.
    만약 `corpus`이 `tomotopy.LDAModel`나 기타 토픽 모델의 인스턴스인 경우, 목표 단어는 각 토픽의 상위 단어에서 추출됩니다.
    만약 `targets`이 주어진 경우 `corpus`가 토픽 모델인 경우에도 `targets`에서 목표 단어를 가져옵니다.
eps : float
    계산 과정에서 0으로 나누는 것을 방지하기 위한 epsilon 값
gamma : float
    indirect confirm measure 계산에 사용되는 gamma 값
'''
    __pdoc__['Coherence.get_score'] = '''주어진 `words` 또는 `topic_id`를 이용해 coherence를 계산합니다.

Parameters
----------
words : Iterable[str]
    coherence가 계산될 단어들.
    만약 `tomotopy.coherence.Coherence`가 `tomotopy.LDAModel`나 기타 토픽 모델의 인스턴스로 `corpus`를 받아 초기화된 경우 `words`는 생략될 수 있습니다.
    이 경우 단어들은 토픽 모델의 `topic_id` 토픽에서 추출됩니다.
topic_id : int
    단어가 추출될 토픽의 id.
    이 파라미터는 오직 `tomotopy.coherence.Coherence`가 `tomotopy.LDAModel`나 기타 토픽 모델의 인스턴스로 `corpus`를 받아 초기화된 경우에만 사용 가능합니다.
    생략시 모든 토픽의 coherence 점수를 평균낸 값이 반환됩니다.
timepoint : int
    ..versionadded:: 0.12.3

    단어가 추출될 토픽의 시점 (`tomotopy.DTModel`에서만 유효)
'''
del os

Classes

class Coherence (corpus, coherence='u_mass', window_size=0, targets=None, top_n=10, eps=1e-12, gamma=1.0)

Coherence class provides the way to calculate topic coherence.

Initialize an instance to calculate coherence for given corpus

Parameters

corpus : Union[Corpus, LDAModel]
A reference corpus to be used for estimating probability. Supports not only an instance of Corpus, but also any topic model instances including LDAModel and its descendants. If corpus is an instance of tomotpy.utils.Corpus, targets must be given too.
coherence : Union[str, Tuple[int, int, int], Tuple[int, int, int, int]]

A coherence metric to be used. The metric can be a combination of (ProbEstimation, Segmentation, ConfirmMeasure) or a combination of (ProbEstimation, Segmentation, ConfirmMeasure, IndirectMeasure).

Also shorthands in str type are supported as follows:

window_size : int
A window size for ProbEstimation.SLIDING_WINDOWS. default value is 10 for 'c_uci' and 'c_npmi' and 110 for 'c_v'.
targets : Iterable[str]
If corpus is an instance of tomotpy.utils.Corpus, target words must be given. Only words that are provided as targets are included in probability estimation.
top_n : int
The number of top words to be extracted from each topic. If corpus is an instance of LDAModel and its descendants, target words are extracted from each topic of the topic model. But if targets are given, target words are extracted from targets, even if corpus is an instance of topic models.
eps : float
An epsilon value to prevent division by zero
gamma : float
A gamma value for indirect confirm measures
Expand source code
class Coherence(_Coherence):
    '''`Coherence` class provides the way to calculate topic coherence.
    '''
    _COH_MAP = {
        'u_mass':(ProbEstimation.DOCUMENT, 0, Segmentation.ONE_PRE, ConfirmMeasure.LOGCOND, IndirectMeasure.NONE),
        'c_v':(ProbEstimation.SLIDING_WINDOWS, 110, Segmentation.ONE_SET, ConfirmMeasure.NPMI, IndirectMeasure.COSINE),
        'c_uci':(ProbEstimation.SLIDING_WINDOWS, 10, Segmentation.ONE_ONE, ConfirmMeasure.PMI, IndirectMeasure.NONE),
        'c_npmi':(ProbEstimation.SLIDING_WINDOWS, 10, Segmentation.ONE_ONE, ConfirmMeasure.NPMI, IndirectMeasure.NONE)
    }

    def __init__(self, corpus, coherence='u_mass', window_size=0, targets=None, top_n=10, eps=1e-12, gamma=1.0):
        '''Initialize an instance to calculate coherence for given corpus

Parameters
----------
corpus : Union[tomotopy.utils.Corpus, tomotopy.LDAModel]
    A reference corpus to be used for estimating probability. 
    Supports not only an instance of `tomotopy.utils.Corpus`, but also any topic model instances including `tomotopy.LDAModel` and its descendants.
    If `corpus` is an instance of `tomotpy.utils.Corpus`, `targets` must be given too.
coherence : Union[str, Tuple[int, int, int], Tuple[int, int, int, int]]
    A coherence metric to be used. The metric can be a combination of (`tomotopy.coherence.ProbEstimation`, `tomotopy.coherence.Segmentation`, `tomotopy.coherence.ConfirmMeasure`)
    or a combination of (`tomotopy.coherence.ProbEstimation`, `tomotopy.coherence.Segmentation`, `tomotopy.coherence.ConfirmMeasure`, `tomotopy.coherence.IndirectMeasure`).
    
    Also shorthands in `str` type are supported as follows:
    > * 'u_mass' : (`tomotopy.coherence.ProbEstimation.DOCUMENT`, `tomotopy.coherence.Segmentation.ONE_PRE`, `tomotopy.coherence.ConfirmMeasure.LOGCOND`)
    > * 'c_uci' : (`tomotopy.coherence.ProbEstimation.SLIDING_WINDOWS`, `tomotopy.coherence.Segmentation.ONE_ONE`, `tomotopy.coherence.ConfirmMeasure.PMI`)
    > * 'c_npmi' : (`tomotopy.coherence.ProbEstimation.SLIDING_WINDOWS`, `tomotopy.coherence.Segmentation.ONE_ONE`, `tomotopy.coherence.ConfirmMeasure.NPMI`)
    > * 'c_v' : (`tomotopy.coherence.ProbEstimation.SLIDING_WINDOWS`, `tomotopy.coherence.Segmentation.ONE_SET`, `tomotopy.coherence.ConfirmMeasure.NPMI`, `tomotopy.coherence.IndirectMeasure.COSINE`)
window_size : int
    A window size for `tomotopy.coherence.ProbEstimation.SLIDING_WINDOWS`.
    default value is 10 for 'c_uci' and 'c_npmi' and 110 for 'c_v'.
targets : Iterable[str]
    If `corpus` is an instance of `tomotpy.utils.Corpus`, target words must be given. 
    Only words that are provided as `targets` are included in probability estimation.
top_n : int
    The number of top words to be extracted from each topic.
    If `corpus` is an instance of `tomotopy.LDAModel` and its descendants, target words are extracted from each topic of the topic model.
    But if `targets` are given, target words are extracted from `targets`, even if `corpus` is an instance of topic models.
eps : float
    An epsilon value to prevent division by zero
gamma : float
    A gamma value for indirect confirm measures
        '''
        import tomotopy as tp
        import itertools
        self._top_n = top_n
        if isinstance(corpus, tp.DTModel):
            self._topic_model = corpus
            if targets is None:
                targets = itertools.chain(*((w for w, _ in corpus.get_topic_words(k, t, top_n=top_n)) for k in range(corpus.k) for t in range(corpus.num_timepoints)))
            corpus = corpus.docs
        elif isinstance(corpus, tp.LDAModel):
            self._topic_model = corpus
            if targets is None:
                targets = itertools.chain(*((w for w, _ in corpus.get_topic_words(k, top_n=top_n)) for k in range(corpus.k)))
            corpus = corpus.docs
        else:
            self._topic_model = None
        
        try:
            pe, w, seg, cm, im = Coherence._COH_MAP[coherence]
        except KeyError:
            if type(coherence) is str: raise ValueError("Unknown `coherence` value (given {})".format(repr(coherence)))
            if len(coherence) not in (3, 4): raise ValueError("`coherence` must be a tuple with len=3 or len=4 (given {})".format(repr(coherence)))
            if len(coherence) == 3: 
                pe, seg, cm = coherence
                im = IndirectMeasure.NONE
            else:
                pe, seg, cm, im = coherence
            w = 0

            if type(pe) is str: pe = ProbEstimation[pe]
            if type(seg) is str: seg = Segmentation[seg]
            if type(cm) is str: cm = ConfirmMeasure[cm]
            if type(im) is str: im = IndirectMeasure[im]
        
        if not targets: raise ValueError("`targets` must be given as a non-empty iterable of str.")

        super().__init__(corpus, pe=pe, seg=seg, cm=cm, im=im, window_size=window_size or w, targets=targets, eps=eps, gamma=gamma)
    
    def get_score(self, words=None, topic_id=None, timepoint=None):
        '''Calculate the coherence score for given `words` or `topic_id`

Parameters
----------
words : Iterable[str]
    Words whose coherence is calculated. 
    If `tomotopy.coherence.Coherence` was initialized using `corpus` as `tomotopy.LDAModel` or its descendants, `words` can be omitted.
    In this case words are extracted from topic with `topic_id`.
topic_id : int
    An id of the topic from which words are extracted. 
    This parameter is valid when `tomotopy.coherence.Coherence` was initialized using `corpus` as `tomotopy.LDAModel` or its descendants.
    If this is omitted, the average score of all topics is returned.
timepoint : int
    ..versionadded:: 0.12.3

    A timepoint of the topic from which words are extracted. (Only for `tomotopy.DTModel`)
        '''
        import tomotopy as tp
        if words is None and self._topic_model is None:
            raise ValueError("`words` must be provided if `Coherence` is not bound to an instance of topic model.")
        if isinstance(self._topic_model, tp.DTModel):
            if int(topic_id is None) + int(timepoint is None) == 1:
                raise ValueError("Both `topic_id` and `timepoint` should be given.")
            if words is None and topic_id is None:
                c = []
                for k in range(self._topic_model.k):
                    for t in range(self._topic_model.num_timepoints):
                        c.append(super().get_score((w for w, _ in self._topic_model.get_topic_words(k, timepoint=t, top_n=self._top_n))))
                return sum(c) / len(c)
            
            if words is None:
                words = (w for w, _ in self._topic_model.get_topic_words(topic_id, timepoint=timepoint, top_n=self._top_n))
            return super().get_score(words)
        else:
            if timepoint is not None:
                raise ValueError("`timepoint` is valid for only `DTModel`.")
            if words is None and topic_id is None:
                c = []
                for k in range(self._topic_model.k):
                    c.append(super().get_score((w for w, _ in self._topic_model.get_topic_words(k, top_n=self._top_n))))
                return sum(c) / len(c)
            
            if words is None:
                words = (w for w, _ in self._topic_model.get_topic_words(topic_id, top_n=self._top_n))
            return super().get_score(words)

Ancestors

  • tomotopy._Coherence

Methods

def get_score(self, words=None, topic_id=None, timepoint=None)

Calculate the coherence score for given words or topic_id

Parameters

words : Iterable[str]
Words whose coherence is calculated. If Coherence was initialized using corpus as LDAModel or its descendants, words can be omitted. In this case words are extracted from topic with topic_id.
topic_id : int
An id of the topic from which words are extracted. This parameter is valid when Coherence was initialized using corpus as LDAModel or its descendants. If this is omitted, the average score of all topics is returned.
timepoint : int

Added in version: 0.12.3

A timepoint of the topic from which words are extracted. (Only for DTModel)

Expand source code
    def get_score(self, words=None, topic_id=None, timepoint=None):
        '''Calculate the coherence score for given `words` or `topic_id`

Parameters
----------
words : Iterable[str]
    Words whose coherence is calculated. 
    If `tomotopy.coherence.Coherence` was initialized using `corpus` as `tomotopy.LDAModel` or its descendants, `words` can be omitted.
    In this case words are extracted from topic with `topic_id`.
topic_id : int
    An id of the topic from which words are extracted. 
    This parameter is valid when `tomotopy.coherence.Coherence` was initialized using `corpus` as `tomotopy.LDAModel` or its descendants.
    If this is omitted, the average score of all topics is returned.
timepoint : int
    ..versionadded:: 0.12.3

    A timepoint of the topic from which words are extracted. (Only for `tomotopy.DTModel`)
        '''
        import tomotopy as tp
        if words is None and self._topic_model is None:
            raise ValueError("`words` must be provided if `Coherence` is not bound to an instance of topic model.")
        if isinstance(self._topic_model, tp.DTModel):
            if int(topic_id is None) + int(timepoint is None) == 1:
                raise ValueError("Both `topic_id` and `timepoint` should be given.")
            if words is None and topic_id is None:
                c = []
                for k in range(self._topic_model.k):
                    for t in range(self._topic_model.num_timepoints):
                        c.append(super().get_score((w for w, _ in self._topic_model.get_topic_words(k, timepoint=t, top_n=self._top_n))))
                return sum(c) / len(c)
            
            if words is None:
                words = (w for w, _ in self._topic_model.get_topic_words(topic_id, timepoint=timepoint, top_n=self._top_n))
            return super().get_score(words)
        else:
            if timepoint is not None:
                raise ValueError("`timepoint` is valid for only `DTModel`.")
            if words is None and topic_id is None:
                c = []
                for k in range(self._topic_model.k):
                    c.append(super().get_score((w for w, _ in self._topic_model.get_topic_words(k, top_n=self._top_n))))
                return sum(c) / len(c)
            
            if words is None:
                words = (w for w, _ in self._topic_model.get_topic_words(topic_id, top_n=self._top_n))
            return super().get_score(words)
class ConfirmMeasure (value, names=None, *, module=None, qualname=None, type=None, start=1)

This enumeration follows the direct confirm measure in the paper.

Expand source code
class ConfirmMeasure(IntEnum):
    '''
    This enumeration follows the direct confirm measure in the paper.
    '''

    DIFFERENCE = 1
    RATIO = 2
    LIKELIHOOD = 3
    LOGLIKELIHOOD = 4
    PMI = 5
    NPMI = 6
    LOGCOND = 7

Ancestors

  • enum.IntEnum
  • builtins.int
  • enum.Enum

Class variables

var DIFFERENCE
var LIKELIHOOD
var LOGCOND
var LOGLIKELIHOOD
var NPMI
var PMI
var RATIO
class IndirectMeasure (value, names=None, *, module=None, qualname=None, type=None, start=1)

This enumeration follows the indirect confirm measure in the paper.

Expand source code
class IndirectMeasure(IntEnum):
    '''
    This enumeration follows the indirect confirm measure in the paper.
    '''

    NONE = 0
    COSINE = 1
    DICE = 2
    JACCARD = 3

Ancestors

  • enum.IntEnum
  • builtins.int
  • enum.Enum

Class variables

var COSINE
var DICE
var JACCARD
var NONE
class ProbEstimation (value, names=None, *, module=None, qualname=None, type=None, start=1)

This enumeration follows the probability estimator in the paper.

Expand source code
class ProbEstimation(IntEnum):
    '''
    This enumeration follows the probability estimator in the paper.
    '''
    DOCUMENT = 1
    SLIDING_WINDOWS = 2

Ancestors

  • enum.IntEnum
  • builtins.int
  • enum.Enum

Class variables

var DOCUMENT
var SLIDING_WINDOWS
class Segmentation (value, names=None, *, module=None, qualname=None, type=None, start=1)

This enumeration follows the segmentation in the paper.

Expand source code
class Segmentation(IntEnum):
    '''
    This enumeration follows the segmentation in the paper.
    '''

    ONE_ONE = 1
    ONE_PRE = 2
    ONE_SUC = 3
    ONE_ALL = 4
    ONE_SET = 5

Ancestors

  • enum.IntEnum
  • builtins.int
  • enum.Enum

Class variables

var ONE_ALL
var ONE_ONE
var ONE_PRE
var ONE_SET
var ONE_SUC